
SRI AKILANDESWARI WOMEN’S COLLEGE, WANDIWASH

RELATIONAL DATABASE MANAGEMENT SYSTEM

Class: II BCA

Ms.K.RAMYA
Assistant Professor

Department of Computer Applications

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH

RELATIONAL DATABASE
MANAGEMENT SYSTEM

Lecture contents

Section-1: Introduction

Section-2: Relational Algebra

Section-3: Structural Query Language

Section-4: Indexes

Section-5: Summary & Conclusion

Section-1: Introduction

Introduction

 Database – collection of persistent data

 Database Management System (DBMS) – software
system that supports creation, population, and
querying of a database.

SQL

Relational Database
 Relational Database Management System (RDBMS)

 Consists of a number of tables and single schema
(definition of tables and attributes)

 Students (sid, name, login, age, gpa)

Students identifies the table

sid, name, login, age, gpa identify attributes

sid is primary key

An Example Table
 Students (sid: string, name: string, login: string, age:

integer, gpa: real)

sid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53650 Smith smith@math 19 3.8

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

Another example: Courses
 Courses (cid, instructor, quarter, dept)

cid instructor quarter dept

Carnatic10

1

Jane Fall 06 Music

Reggae203 Bob Summer

06

Music

Topology10

1

Mary Spring 06 Math

History105 Alice Fall 06 History

Keys

 Primary key – minimal subset of fields that is unique identifier
for a tuple

 sid is primary key for Students

 cid is primary key for Courses

 Foreign key –connections between tables

 Courses (cid, instructor, quarter, dept)

 Students (sid, name, login, age, gpa)

 How do we express which students take each course?

Many to many relationships
 In general, need a new table

Enrolled(cid, grade, studid)

Studid is foreign key that references sid in Student table

cid grade studid

Carnatic101 C 53831

Reggae203 B 53832

Topology112 A 53650

History 105 B 53666

sid name login

50000 Dave dave@cs

53666 Jones jones@cs

53688 Smith smith@ee

53650 Smith smith@math

53831 Madayan madayan@music

53832 Guldu guldu@music

Enrolled

Student
Foreign

key

Section-2: Relational Algebra

Relational Algebra
 Collection of operators for specifying queries

 Query describes step-by-step procedure for computing
answer (i.e., operational)

 Each operator accepts one or two relations as input
and returns a relation as output

 Relational algebra expression composed of multiple
operators

Basic operators
 Selection – return rows that meet some condition

 Projection – return column values

 Union

 Cross product

 Difference

 Other operators can be defined in terms of basic
operators

Example Schema (simplified)

 Courses (cid, instructor, quarter, dept)
 Students (sid, name, gpa)
 Enrolled (cid, grade, studid)

Selection
Select students with gpa higher than 3.3 from S1:

σgpa>3.3(S1)

sid name gpa

50000 Dave 3.3

53666 Jones 3.4

53688 Smith 3.2

53650 Smith 3.8

53831 Madayan 1.8

53832 Guldu 2.0

S1

sid name gpa

53666 Jones 3.4

53650 Smith 3.8

Projection
Project name and gpa of all students in S1:

name, gpa(S1)

S1

Sid name gpa

50000 Dave 3.3

53666 Jones 3.4

53688 Smith 3.2

53650 Smith 3.8

53831 Madayan 1.8

53832 Guldu 2.0

name gpa

Dave 3.3

Jones 3.4

Smith 3.2

Smith 3.8

Madayan 1.8

Guldu 2.0

Combine Selection and Projection
 Project name and gpa of students in S1 with gpa higher

than 3.3:

name,gpa(σgpa>3.3(S1))

Sid name gpa

50000 Dave 3.3

53666 Jones 3.4

53688 Smith 3.2

53650 Smith 3.8

53831 Madayan 1.8

53832 Guldu 2.0

name gpa

Jones 3.4

Smith 3.8

Set Operations
 Union (R U S)

 All tuples in R or S (or both)

 R and S must have same number of fields

 Corresponding fields must have same domains

 Intersection (R ∩ S)

 All tuples in both R and S

 Set difference (R – S)

 Tuples in R and not S

Set Operations (continued)
 Cross product or Cartesian product (R x S)

 All fields in R followed by all fields in S

 One tuple (r,s) for each pair of tuples r  R, s  S

Example: Intersection

sid name gpa

50000 Dave 3.3

53666 Jones 3.4

53688 Smith 3.2

53650 Smith 3.8

53831 Madayan 1.8

53832 Guldu 2.0

sid name gpa

53666 Jones 3.4

53688 Smith 3.2

53700 Tom 3.5

53777 Jerry 2.8

53832 Guldu 2.0

S1 S2

S1  S2 =

sid name gpa

53666 Jones 3.4

53688 Smith 3.2

53832 Guldu 2.0

Joins
 Combine information from two or more tables

 Example: students enrolled in courses:

S1 S1.sid=E.studidE

Sid name gpa

50000 Dave 3.3

53666 Jones 3.4

53688 Smith 3.2

53650 Smith 3.8

53831 Madayan 1.8

53832 Guldu 2.0

cid grade studid

Carnatic101 C 53831

Reggae203 B 53832

Topology112 A 53650

History 105 B 53666

S1
E

Joins

Sid name gpa

50000 Dave 3.3

53666 Jones 3.4

53688 Smith 3.2

53650 Smith 3.8

53831 Madayan 1.8

53832 Guldu 2.0

cid grade studid

Carnatic101 C 53831

Reggae203 B 53832

Topology112 A 53650

History 105 B 53666

S1
E

sid name gpa cid grade studid

53666 Jones 3.4 History105 B 53666

53650 Smith 3.8 Topology112 A 53650

53831 Madayan 1.8 Carnatic101 C 53831

53832 Guldu 2.0 Reggae203 B 53832

Relational Algebra Summary
 Algebras are useful to manipulate data types (relations in

this case)

 Set-oriented

 Brings some clarity to what needs to be done

 Opportunities for optimization

 May have different expressions that do same thing

 We will see examples of algebras for other types of data in
this course

Section-3: Structural Query

Language

Introduction to SQL
 CREATE TABLE

 Create a new table, e.g., students, courses, enrolled

 SELECT-FROM-WHERE

 List all CS courses

 INSERT

 Add a new student, course, or enroll a student in a
course

Create Table
 CREATE TABLE Enrolled

(studid CHAR(20),

cid CHAR(20),

grade CHAR(20),

PRIMARY KEY (studid, cid),

FOREIGN KEY (studid) references Students)

Select-From-Where query
 “Find all students who are under 18”

SELECT *

FROM Students S

WHERE S.age < 18

Queries across multiple tables (joins)
 “Print the student name and course ID where the

student received an ‘A’ in the course”

SELECT S.name, E.cid

FROM Students S, Enrolled E

WHERE S.sid = E.studid AND E.grade = ‘A’

Other SQL features
 MIN, MAX, AVG

 Find highest grade in fall database course

 COUNT, DISTINCT

 How many students enrolled in CS courses in the fall?

 ORDER BY, GROUP BY

 Rank students by their grade in fall database course

Views

 Virtual table defined on base tables defined by a query
 Single or multiple tables

 Security – “hide” certain attributes from users
 Show students in each course but hide their grades

 Ease of use – expression that is more intuitively obvious
to user

 Views can be materialized to improve query
performance

Views
 Suppose we often need names of students who got a ‘B’ in

some course:

CREATE VIEW B_Students(name, sid, course)

AS SELECT S.sname, S.sid, E.cid

FROM Students S, Enrolled E

WHERE S.sid=E.studid and E.grade = ‘B’

name sid course

Jones 53666 History105

Guldu 53832 Reggae20

3

Section-4: Indexes

Indexes
 Idea: speed up access to desired data

 “Find all students with gpa > 3.3

 May need to scan entire table

 Index consists of a set of entries pointing to locations
of each search key

Types of Indexes

 Clustered vs. Unclustered

 Clustered- ordering of data records same as ordering of
data entries in the index

 Unclustered- data records in different order from index

 Primary vs. Secondary

 Primary – index on fields that include primary key

 Secondary – other indexes

Example: Clustered Index
 Sorted by sid

sid name gpa

50000 Dave 3.3

53650 Smith 3.8

53666 Jones 3.4

53688 Smith 3.2

53831 Madayan 1.8

53832 Guldu 2.0

50000

53600

53800

Example: Unclustered Index
 Sorted by sid

 Index on gpa
sid name gpa

50000 Dave 3.3

53650 Smith 3.8

53666 Jones 3.4

53688 Smith 3.2

53831 Madayan 1.8

53832 Guldu 2.0

1.8

2.0

3.2

3.3

3.4

3.8

Comments on Indexes
 Indexes can significantly speed up query execution

 But inserts more costly

 May have high storage overhead

 Need to choose attributes to index wisely!

 What queries are run most frequently?

 What queries could benefit most from an index?

 Preview of things to come: SDSS

Section-5: Summary

& Conclusion

Summary: Why are RDBMS useful?

 Data independence – provides abstract view of the data,
without details of storage

 Efficient data access – uses techniques to store and
retrieve data efficiently

 Reduced application development time – many
important functions already supported

 Centralized data administration

 Data Integrity and Security

 Concurrency control and recovery

So, why don’t scientists use them?
 “I tried to use databases in my project, but they were

just too [slow | hard-to-use | expensive | complex] . So
I use files”.

 Gray and Szalay, Where Rubber Meets the Sky: Bridging
the Gap Between Databases and Science

Some other limitations of RDBMS
 Arrays

 Hierarchical data

 Data Model

Example: Taxonomy of Organisms

 Hierarchy of categories:

 Kingdom - phylum – class – order – family – genus - species

Animals

Chordates

Vertebrates

Arthropods

birds

insects spiders crustaceans

reptiles mammals

THANK YOU

